Search results
Results from the WOW.Com Content Network
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
The discrete analogue of Green's theorem is applied in an instrument known as a planimeter, which is used to calculate the area of a flat surface on a drawing. For example, it can be used to calculate the amount of area taken up by an irregularly shaped flower bed or swimming pool when designing the layout of a piece of property.
The solution of the Dirichlet problem using Sobolev spaces for planar domains can be used to prove the smooth version of the Riemann mapping theorem. Bell (1992) has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the reproducing kernels of Szegő and Bergman, and in turn used it to solve the ...
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
Titchmarsh (1939) proves it in a straightforward way using Riemann approximating sums corresponding to subdivisions of a rectangle into smaller rectangles. To prove Clairaut's theorem, assume f is a differentiable function on an open set U, for which the mixed second partial derivatives f yx and f xy exist and are continuous.
It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function. In such a context, this identity is the mathematical expression of the Huygens principle , and leads to Kirchhoff's diffraction formula and other approximations.
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...