enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  4. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    With the development of statistical mechanics, the third law of thermodynamics (like the other laws) changed from a fundamental law (justified by experiments) to a derived law (derived from even more basic laws). The basic law from which it is primarily derived is the statistical-mechanics definition of entropy for a large system:

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The zeroth law is of importance in thermometry, because it implies the existence of temperature scales. In practice, C is a thermometer, and the zeroth law says that systems that are in thermodynamic equilibrium with each other have the same temperature. The law was actually the last of the laws to be formulated. First law of thermodynamics

  6. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Entropy is a state function and is defined in an absolute sense through the Third Law of Thermodynamics as S = ∫ 0 T d Q r e v T {\displaystyle S=\int _{0}^{T}{dQ_{rev} \over T}} where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  8. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    To obtain the absolute value of the entropy, we consider the third law of thermodynamics: perfect crystals at the absolute zero have an entropy =. From a macroscopic perspective, in classical thermodynamics the entropy is interpreted as a state function of a thermodynamic system : that is, a property depending only on the current state of the ...

  9. Residual entropy - Wikipedia

    en.wikipedia.org/wiki/Residual_entropy

    Residual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero.This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic crystal referred to the crystal state, whose entropy is zero according to the third law of thermodynamics.