Search results
Results from the WOW.Com Content Network
Isaac Newton's notation for differentiation (also called the dot notation, fluxions, or sometimes, crudely, the flyspeck notation [12] for differentiation) places a dot over the dependent variable. That is, if y is a function of t , then the derivative of y with respect to t is
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function ...
Expanding (x + y) n yields the sum of the 2 n products of the form e 1 e 2... e n where each e i is x or y. Rearranging factors shows that each product equals x n−k y k for some k between 0 and n. For a given k, the following are proved equal in succession: the number of terms equal to x n−k y k in the expansion
Therefore, let f(x) = g(x) = 2x + 1. Then, f(x)g(x) = 4x 2 + 4x + 1 = 1. Thus deg(f⋅g) = 0 which is not greater than the degrees of f and g (which each had degree 1). Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f(x) = 0 to also be undefined so that it follows the rules of a ...
2. A block of time dedicated to a particular task or purpose. 3. Related to photography. 4. The main part of these words all share something in common (hint: it relates to feathered animals).
One may show by induction that F(n) counts the number of ways that a n × 1 strip of squares may be covered by 2 × 1 and 1 × 1 tiles. On the other hand, if such a tiling uses exactly k of the 2 × 1 tiles, then it uses n − 2 k of the 1 × 1 tiles, and so uses n − k tiles total.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...