Search results
Results from the WOW.Com Content Network
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Any two points that are not antipodal points determine a unique great circle. There is a natural unit of angle measurement (based on a revolution), a natural unit of length (based on the circumference of a great circle) and a natural unit of area (based on the area of the sphere). Each great circle is associated with a pair of antipodal points ...
(Top) 1 Used equally in melee and thrown. 2 Normally melee. Toggle Normally melee subsection. 2.1 Asia. 2.2 Europe. ... Boar spear; Bohemian earspoon; Brandistock ...
Spear-armed hoplite from Greco-Persian Wars. A spear is a polearm consisting of a shaft, usually of wood, with a pointed head.The head may be simply the sharpened end of the shaft itself, as is the case with fire hardened spears, or it may be made of a more durable material fastened to the shaft, such as bone, flint, obsidian, copper, bronze, iron, or steel.
Some dagger axes include a spear-point. There is a (rare) variant type with a divided two-part head, consisting of the usual straight blade and a scythe-like blade. Other rarities include archaeology findings with two or sometimes three blades stacked in line on top of a pole, but were generally thought as ceremonial polearms.
For example, to find the midpoint of the path, substitute σ = 1 ⁄ 2 (σ 01 + σ 02); alternatively to find the point a distance d from the starting point, take σ = σ 01 + d/R. Likewise, the vertex, the point on the great circle with greatest latitude, is found by substituting σ = + 1 ⁄ 2 π. It may be convenient to parameterize the ...
Going the "long way round" on a great circle between two points on a sphere is a geodesic but not the shortest path between the points. The map t → t 2 {\displaystyle t\to t^{2}} from the unit interval on the real number line to itself gives the shortest path between 0 and 1, but is not a geodesic because the velocity of the corresponding ...