Search results
Results from the WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The analysis of errors computed using the global positioning system is important for understanding how GPS works, and for knowing what magnitude errors should be expected. The Global Positioning System makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected.
The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm. The term forward–backward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. In this sense, the descriptions in the ...
Forward-Backward Euler method The result of applying both the Forward Euler method and the Forward-Backward Euler method for a = 5 {\displaystyle a=5} and n = 30 {\displaystyle n=30} . In order to apply the IMEX-scheme, consider a slightly different differential equation:
Liveness analysis is a "backwards may" analysis. The analysis is done in a backwards order, and the dataflow confluence operator is set union.In other words, if applying liveness analysis to a function with a particular number of logical branches within it, the analysis is performed starting from the end of the function working towards the beginning (hence "backwards"), and a variable is ...
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
Complexity of Forward Algorithm is (), where is the number of hidden or latent variables, like weather in the example above, and is the length of the sequence of the observed variable. This is clear reduction from the adhoc method of exploring all the possible states with a complexity of Θ ( n m n ) {\displaystyle \Theta (nm^{n})} .
The general algorithm involves message passing and is substantially similar to the belief propagation algorithm (which is the generalization of the forward-backward algorithm). With an algorithm called iterative Viterbi decoding, one can find the subsequence of an observation that matches best (on average) to a given hidden Markov model.