Search results
Results from the WOW.Com Content Network
[1] [2] Cilia and flagella are found on many cells, organisms, and microorganisms, to provide motility. The axoneme serves as the "skeleton" of these organelles, both giving support to the structure and, in some cases, the ability to bend. Though distinctions of function and length may be made between cilia and flagella, the internal structure ...
Microtubule arrangement in a 9+2 axoneme of bronchiolar cilia. Microtubule-organizing centers function as the site where microtubule formation begins, as well as a location where free-ends of microtubules attract to. [2] Within the cells, microtubule-organizing centers can take on many different forms.
Cilia Structure. Primary cilia are found to be formed when a cell exits the cell cycle. [2] Cilia consist of four main compartments: the basal body at the base, the transition zone, the axenome which is an arrangement of nine doublet microtubules and considered to be the core of the cilium, and the ciliary membrane. [2]
Research into biofilms has shown that bacteria can alter cilia. A biofilm is a community of bacteria of either the same or multiple species of bacteria. The cluster of cells secretes different factors which form an extracellular matrix. Cilia in the respiratory system is known to move mucus and pathogens out of the airways.
The latter formation is commonly referred to as a "9+2" arrangement, wherein each doublet is connected to another by the protein dynein. As both flagella and cilia are structural components of the cell, and are maintained by microtubules, they can be considered part of the cytoskeleton. There are two types of cilia: motile and non-motile cilia.
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
The cell wall of some Gram-positive bacteria can be completely dissolved by lysozymes which attack the bonds between N-acetylmuramic acid and N-acetylglucosamine. In other Gram-positive bacteria, such as Staphylococcus aureus, the walls are resistant to the action of lysozymes. [4] They have O-acetyl groups on carbon-6 of some muramic acid ...
An undulipodium or undulopodium (Greek: "swinging foot"; plural undulipodia), or a 9+2 organelle is a motile filamentous extracellular projection of eukaryotic cells.It is basically synonymous to flagella and cilia which are differing terms for similar molecular structures used on different types of cells, and usually correspond to different waveforms.