Search results
Results from the WOW.Com Content Network
The lytic cycle results in the destruction of the infected cell and its membrane. Bacteriophages that can only go through the lytic cycle are called virulent phages (in contrast to temperate phages). In the lytic cycle, the viral DNA exists as a separate free floating molecule within the bacterial cell, and replicates separately from the host ...
Temperate phages can switch between a lytic and lysogenic life cycle. Lytic is more drastic, killing the host whereas lysogenic impacts host cells genetically or physiologically. [4] [5] [6] Here is a chart on temperate phages that are lytic and lysogenic and how they're related. Lysogeny is characterized by the integration of the phage genome ...
Depending on the virus, a variety of genetic changes can occur in the host cell. In the case of a lytic cycle virus, the cell will only survive long enough to the replication machinery to be used to create additional viral units. In other cases, the viral DNA will persist within the host cell and replicate as the cell replicates.
Some viruses can "hide" within a cell, which may mean that they evade the host cell defenses or immune system and may increase the long-term "success" of the virus. This hiding is deemed latency. During this time, the virus does not produce any progeny, it remains inactive until external stimuli—such as light or stress—prompts it to activate.
Viruses may undergo two types of life cycles: the lytic cycle and the lysogenic cycle. In the lytic cycle, the virus introduces its genome into a host cell and initiates replication by hijacking the host's cellular machinery to make new copies of the virus. [12] In the lysogenic life cycle, the viral genome is incorporated into the host genome.
Lytic cycle is a cycle of viral reproduction that involves the destruction of the infected cell and its membrane. This cycle involves a virus that overtakes the host cell and its machinery to reproduce. Therefore, the virus must go through 5 stages in order to reproduce and infect the host cell: [citation needed]
An example of a virus that uses the lysogenic cycle to its advantage is the Herpes Simplex Virus. [10] After first entering the lytic cycle and infecting a human host, it enters the lysogenic cycle. This allows it to travel to the nervous system's sensory neurons and remain undetected for long periods of time. In the case of genital herpes ...
At this point they initiate the reproductive cycle, resulting in lysis of the host cell. As the lysogenic cycle allows the host cell to continue to survive and reproduce, the virus is replicated in all offspring of the cell. An example of a bacteriophage known to follow the lysogenic cycle and the lytic cycle is the phage lambda of E. coli. [54]