Search results
Results from the WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [ 12 ] [ 13 ] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative ( Box–Jenkins ) method for choosing and estimating them.
Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.
gretl is an example of an open-source statistical package. ADaMSoft – a generalized statistical software with data mining algorithms and methods for data management; ADMB – a software suite for non-linear statistical modeling based on C++ which uses automatic differentiation; Chronux – for neurobiological time series data; DAP – free ...
The Standard "ISO/IEEE International Standard - Health informatics--Point-of-care medical device communication - Part 10207: Domain Information and Service Model for Service-Oriented Point-of-Care Medical Device Communication" [9] is derived from the IEEE 11073-10201 Domain Information Model. It is designed to meet the requirements of networked ...
Analytics is the "extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact-based management to drive decisions and actions." It is a subset of business intelligence , which is a set of technologies and processes that uses data to understand and analyze business performance to drive decision-making .
Predictive models can be built for different assets like stocks, futures, currencies, commodities etc. [citation needed] Predictive modeling is still extensively used by trading firms to devise strategies and trade. It utilizes mathematically advanced software to evaluate indicators on price, volume, open interest and other historical data, to ...
One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.