Search results
Results from the WOW.Com Content Network
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
In linear systems, the two main classes of relaxation methods are stationary iterative methods, and the more general Krylov subspace methods. The Jacobi method is a simple relaxation method. The Gauss–Seidel method is an improvement upon the Jacobi method.
The following algorithm is a description of the Jacobi method in math-like notation. It calculates a vector e which contains the eigenvalues and a matrix E which contains the corresponding eigenvectors; that is, e i {\displaystyle e_{i}} is an eigenvalue and the column E i {\displaystyle E_{i}} an orthonormal eigenvector for e i {\displaystyle ...
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process .
An early iterative method for solving a linear system appeared in a letter of Gauss to a student of his. He proposed solving a 4-by-4 system of equations by repeatedly solving the component in which the residual was the largest [ citation needed ] .
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.
Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).