Search results
Results from the WOW.Com Content Network
FeMoco (FeMo cofactor) is the primary cofactor of nitrogenase. Nitrogenase is the enzyme that catalyzes the conversion of atmospheric nitrogen molecules N 2 into ammonia (NH 3) through the process known as nitrogen fixation. Because it contains iron and molybdenum, the cofactor is called FeMoco. Its stoichiometry is Fe 7 MoS 9 C.
Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase, and iron-only (Fe ...
[3] [4] He examines the structure and function of metal-containing proteins, especially nitrogenase in biological nitrogen fixation, and membrane proteins that carry out ATP-dependent transport through membranes (e.g. ABC transporters). To do this, his group uses X-ray crystallography. His interest in nitrogenase began in William Lipscomb's ...
The iron in cytochromes usually exists in a ferrous (Fe 2+) and a ferric (Fe 3+) state with a ferroxo (Fe 4+) state found in catalytic intermediates. [1] Cytochromes are, thus, capable of performing electron transfer reactions and catalysis by reduction or oxidation of their heme iron. The cellular location of cytochromes depends on their function.
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
Life insurance underwriting is the behind-the-scenes process that plays a pivotal role in shaping your policy. This methodical evaluation delves into your personal and health details, considering ...
It differs in having an extra amine group, creating a more stable bond to thymine. [3] Adenine and guanine have a fused-ring skeletal structure derived of purine, hence they are called purine bases. [4] The purine nitrogenous bases are characterized by their single amino group (−NH 2), at the C6 carbon in adenine and C2 in guanine. [5]
The nitrogenase holoenzyme of A. vinelandii has been characterised by X-ray crystallography in both ADP tetrafluoroaluminate-bound [5] and MgATP-bound [6] states. The enzyme possesses molybdenum iron - sulfido cluster cofactors ( FeMoco ) as active sites , each bearing two pseudocubic iron-sulfido structures.