Search results
Results from the WOW.Com Content Network
This category includes chemical compounds that are derivatives or structural analogs of benzene in which the benzene has multiple substituents or bonds. For benzene derivatives that include a phenyl group, C 6 H 5 – (benzene with only one substituent or bond), see the child category, Category:Phenyl compounds.
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
Alkylbenzenes are derivatives of benzene, in which one or more hydrogen atoms are replaced by alkyl groups. The simplest member, toluene (or methylbenzene), has the hydrogen atom of the benzene ring replaced by a methyl group. The chemical formula of alkylbenzenes is C n H 2n-6. [2] Safety hazards of toluene.
A disubstituted phenyl compound (trisubstituted benzene) may be, for example, 1,3,5-trisubstituted or 1,2,3-trisubstituted. Higher degrees of substitution, of which the pentafluorophenyl group is an example, exist and are named according to IUPAC nomenclature.
a solution of hydrogen peroxide and an iron catalyst that is used to oxidize contaminants or waste waters Formaldehyde: the simplest aldehyde; an important precursor to many other chemical compounds, such as polymers and polyfunctional alcohols Formic acid: the simplest carboxylic acid; often used as a source of the hydride ion Grignard reagents
In organic chemistry, dihydroxybenzenes (benzenediols) are organic compounds in which two hydroxyl groups (−OH) are substituted onto a benzene ring (C 6 H 6).These aromatic compounds are classed as phenols.
There are three main ortho effects in substituted benzene compounds: Steric hindrance forces cause substitution of a chemical group in the ortho position of benzoic acids become stronger acids. Steric inhibition of protonation caused by substitution of anilines to become weaker bases, compared to substitution of isomers in the meta and para ...
Because inductive effects depends strongly on proximity, the meta and ortho positions of fluorobenzene are considerably less reactive than benzene. Thus, electrophilic aromatic substitution on fluorobenzene is strongly para selective. This -I and +M effect is true for all halides - there is some electron withdrawing and donating character of each.