Search results
Results from the WOW.Com Content Network
Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.
Yet another approach to graph rewriting, known as determinate graph rewriting, came out of logic and database theory. [2] In this approach, graphs are treated as database instances, and rewriting operations as a mechanism for defining queries and views; therefore, all rewriting is required to yield unique results (up to isomorphism), and this is achieved by applying any rewriting rule ...
The transformation rules that KBSA used were different than traditional rules for expert systems. Transformation rules matched against specification and implementation languages rather than against facts in the world. It was possible to specify transformations using patterns, wildcards, and recursion on both the right and left hand sides of a rule.
The transformation of graphs is often formalized and represented by graph rewrite systems. Complementary to graph transformation systems focusing on rule-based in-memory manipulation of graphs are graph databases geared towards transaction-safe, persistent storing and querying of graph-structured data.
The form of YΔ- and ΔY-transformations used to define the Petersen family is as follows: . If a graph G contains a vertex v with exactly three neighbors, then the YΔ-transform of G at v is the graph formed by removing v from G and adding edges between each pair of its three neighbors.
ΔY- and YΔ-transformations are a tool both in pure graph theory as well as applications. Both operations preserve a number of natural topological properties of graphs. . For example, applying a YΔ-transformation to a 3-vertex of a planar graph, or a ΔY-transformation to a triangular face of a planar graph, results again in a planar graph.
A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be determined in polynomial time is a major unsolved problem in computer science, known as the graph isomorphism problem. [1] [2] The two graphs shown below are isomorphic, despite their different looking drawings.
Language links are at the top of the page across from the title.