enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  3. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.

  4. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  5. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    Indeed, convex functions are exactly those that satisfies the hypothesis of Jensen's inequality. A first-order homogeneous function of two positive variables x {\displaystyle x} and y , {\displaystyle y,} (that is, a function satisfying f ( a x , a y ) = a f ( x , y ) {\displaystyle f(ax,ay)=af(x,y)} for all positive real a , x , y > 0 ...

  6. Jensen's formula - Wikipedia

    en.wikipedia.org/wiki/Jensen's_formula

    Jensen's formula can be used to estimate the number of zeros of an analytic function in a circle. Namely, if is a function analytic in a disk of radius centered at and if | | is bounded by on the boundary of that disk, then the number of zeros of in a circle of radius < centered at the same point does not exceed

  7. Jensen's theorem - Wikipedia

    en.wikipedia.org/wiki/Jensen's_theorem

    Download as PDF; Printable version; ... In mathematics, Jensen's theorem may refer to: Johan Jensen's inequality for convex functions; Johan Jensen's formula in ...

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Hölder's inequality; Jackson's inequality; Jensen's inequality; Khabibullin's conjecture on integral inequalities; Kantorovich inequality; Karamata's inequality; Korn's inequality; Ladyzhenskaya's inequality; Landau–Kolmogorov inequality; Lebedev–Milin inequality; Lieb–Thirring inequality; Littlewood's 4/3 inequality; Markov brothers ...

  9. Karamata's inequality - Wikipedia

    en.wikipedia.org/wiki/Karamata's_inequality

    The finite form of Jensen's inequality is a special case of this result. Consider the real numbers x 1, …, x n ∈ I and let := + + + denote their arithmetic mean.Then (x 1, …, x n) majorizes the n-tuple (a, a, …, a), since the arithmetic mean of the i largest numbers of (x 1, …, x n) is at least as large as the arithmetic mean a of all the n numbers, for every i ∈ {1, …, n − 1}.