Search results
Results from the WOW.Com Content Network
A Riemannian manifold (M, g) is said to be homogeneous if for every pair of points x and y in M, there is some isometry f of the Riemannian manifold sending x to y. This can be rephrased in the language of group actions as the requirement that the natural action of the isometry group is transitive.
There exist non-geodesically complete compact pseudo-Riemannian (but not Riemannian) manifolds. An example of this is the Clifton–Pohl torus . In the theory of general relativity , which describes gravity in terms of a pseudo-Riemannian geometry, many important examples of geodesically incomplete spaces arise, e.g. non-rotating uncharged ...
In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry , leading to consequences in the theory of holonomy ; or algebraically through Lie theory , which ...
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration, their motion satisfying the geodesic equations.
The locally length minimizing curves of Riemannian and Finsler manifolds are called geodesics. Using the framework of Lagrangian mechanics one can describe these curves with spray structures. Define a Lagrangian function on TM by (,) = (,), where F:TM→R is the Finsler function.
On a complete Riemannian manifold, for any Jacobi field there is a family of geodesics describing the field (as in the preceding paragraph). The Jacobi equation is a linear , second order ordinary differential equation ; in particular, values of J {\displaystyle J} and D d t J {\displaystyle {\frac {D}{dt}}J} at one point of γ {\displaystyle ...