Search results
Results from the WOW.Com Content Network
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
Animated example of a depth-first search For the following graph: a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following ...
Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to ...
A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no good heuristic is available for producing an initial ...
Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where = for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.
It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
Randomized depth-first search on a hexagonal grid. The depth-first search algorithm of maze generation is frequently implemented using backtracking. This can be described with a following recursive routine: Given a current cell as a parameter; Mark the current cell as visited; While the current cell has any unvisited neighbour cells