enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Davenport diagram - Wikipedia

    en.wikipedia.org/wiki/Davenport_diagram

    Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”

  3. Acid–base homeostasis - Wikipedia

    en.wikipedia.org/wiki/Acid–base_homeostasis

    An acid-base diagram for human plasma, showing the effects on the plasma pH when P CO 2 in mmHg or Standard Base Excess (SBE) occur in excess or are deficient in the plasma [23] Acid–base imbalance occurs when a significant insult causes the blood pH to shift out of the normal range (7.32 to 7.42 [ 16 ] ).

  4. Homeostasis - Wikipedia

    en.wikipedia.org/wiki/Homeostasis

    The bicarbonate buffer system regulates the ratio of carbonic acid to bicarbonate to be equal to 1:20, at which ratio the blood pH is 7.4 (as explained in the Henderson–Hasselbalch equation). A change in the plasma pH gives an acid–base imbalance. In acid–base homeostasis there are two mechanisms that can help regulate the pH.

  5. Acid–base disorder - Wikipedia

    en.wikipedia.org/wiki/Acid–base_disorder

    Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range (7.35 to 7.45). In the fetus, the normal range differs based on which umbilical vessel is sampled (umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38). [1]

  6. Intracellular pH - Wikipedia

    en.wikipedia.org/wiki/Intracellular_pH

    Physiologically normal intracellular pH is most commonly between 7.0 and 7.4, though there is variability between tissues (e.g., mammalian skeletal muscle tends to have a pH i of 6.8–7.1). [4] [5] There is also pH variation across different organelles, which can span from around 4.5 to 8.0. [6] [7] pH i can be measured in a number of ...

  7. Renal physiology - Wikipedia

    en.wikipedia.org/wiki/Renal_physiology

    The body is very sensitive to its pH. Outside the range of pH that is compatible with life, proteins are denatured and digested, enzymes lose their ability to function, and the body is unable to sustain itself. The kidneys maintain acid-base homeostasis by regulating the pH of the blood plasma. Gains and losses of acid and base must be balanced.

  8. Bicarbonate buffer system - Wikipedia

    en.wikipedia.org/wiki/Bicarbonate_buffer_system

    The tears are unique among body fluids in that they are exposed to the environment. Much like other body fluids, tear fluid is kept in a tight pH range using the bicarbonate buffer system. [15] The pH of tears shift throughout a waking day, rising "about 0.013 pH units/hour" until a prolonged closed-eye period causes the pH to fall again. [15]

  9. Renal compensation - Wikipedia

    en.wikipedia.org/wiki/Renal_compensation

    When the pH of the body falls below 7.35, an acidemia occurs. [2] Similarly, when the pH of the body rises above 7.45, an alkalemia occurs. [2] Renal compensation is one of the many compensatory mechanisms within the body which assist the pH level in ranging between 7.35 and 7.45 as the body cannot function properly when the pH falls out of ...