Search results
Results from the WOW.Com Content Network
The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. Its slope is the acceleration at that point. In mechanics , the derivative of the position vs. time graph of an object is equal to the velocity of the object.
Date/Time Thumbnail Dimensions User Comment; current: 07:10, 10 June 2007: 410 × 300 (6 KB): Urocyon~commonswiki {{Information |Description=Simple example of a physical science graph of two physical quantities.
Date/Time Thumbnail Dimensions User Comment; current: 01:22, 25 February 2007: 496 × 504 (111 KB) Stannered {{Information |Description=Example of a en:velocity vs. time graph, and the relationship between velocity v, en:displacement s, and en:acceleration a. Traced in en:Inkscape from an original drawn in en:Microsoft Paint. |Source=[[:
English: Graph of the velocity versus time of a skydiver reaching terminal velocity. The time evolution is given by = ...
This assumption produces polynomial equations for velocity as a function of time. Constant acceleration allows for the velocity vs. time graph to appear as straight lines, thus designating a relationship between displacement (ΔR), maximum velocity (v peak), acceleration (a), and time(Δt). The following equations show this. [6] [7]
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Position vs. time graph In the study of 1-dimensional kinematics , position vs. time graphs (called x-t graphs for short) provide a useful means to describe motion. Kinematic features besides the object's position are visible by the slope and shape of the lines. [ 1 ]