Search results
Results from the WOW.Com Content Network
The graph of the absolute value function for real numbers Composition of absolute value with a cubic function in different orders. The real absolute value function is continuous everywhere. It is differentiable everywhere except for x = 0. It is monotonically decreasing on the interval (−∞, 0] and monotonically increasing on the interval [0 ...
The spectral radius of a square matrix is the largest absolute value of its eigenvalues. In spectral theory, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements in the spectrum of that operator.
the chromatic number of a graph in graph theory; the Euler characteristic in algebraic topology; electronegativity in the periodic table; the Fourier transform of a linear response function; a character in mathematics; especially a Dirichlet character in number theory; sometimes the mole fraction; a characteristic or indicator function in ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
The first Jacobian rotation will be on the off-diagonal cell with the highest absolute value, which by inspection is [1,4] with a value of 11, and the rotation cell will also be [1,4], =, = in the equations above. The rotation angle is the result of a quadratic solution, but it can be seen in the equation that if the matrix is symmetric, then a ...
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
where | g | is the absolute value of the determinant of the matrix of scalar coefficients of the metric tensor . These are useful when dealing with divergences and Laplacians (see below). The covariant derivative of a vector field with components is given by:
More technically, the abscissa of a point is the signed measure of its projection on the primary axis. Its absolute value is the distance between the projection and the origin of the axis, and its sign is given by the location on the projection relative to the origin (before: negative; after: positive). Similarly, the ordinate of a point is the ...