Search results
Results from the WOW.Com Content Network
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 . The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.
The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...
Portal:Systems science/Picture/1 The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow , noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.
Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video. Code capable of rendering this is available. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system. System ...
The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.
For r < 1, exists outside [0, 1] as an unstable fixed point, but for r = 1, the two fixed points collide, and for r > 1, appears between [0, 1] as a stable fixed point. When the parameter r = 1, the trajectory of the logistic map converges to 0 as before, but the convergence speed is slower at r = 1.
The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...
In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Maps may be parameterized by a discrete-time or a continuous-time parameter.