Search results
Results from the WOW.Com Content Network
A dark star, therefore, has a rarefied atmosphere of "visiting particles", and this ghostly halo of matter and light can radiate, albeit weakly. Also as faster-than-light speeds are possible in Newtonian mechanics, it is possible for particles to escape. Radiation effects A dark star may emit indirect radiation as described above.
[1] [2] [3] In the unlikely event that dark stars have endured to the modern era, they could be detectable by their emissions of gamma rays , neutrinos , and antimatter and would be associated with clouds of cold molecular hydrogen gas that normally would not harbor such energetic, extreme, and rare particles.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The Dark Star, a 1917 novel by Robert W. Chambers; Dark Star, a 1929 novel by Lorna Moon; The Dark Star, a 1939 novel by Margaret Mackie Morrison, writing as March Cost; Dark Star, a 1969 novel by Norma K. Hemming, writing as Nerina Hilliard
Below the complex spherical harmonics are represented on 2D plots with the azimuthal angle, , on the horizontal axis and the polar angle, , on the vertical axis.The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase.
Sin(θ), Tan(θ), and 1 are the heights to the line starting from the x-axis, while Cos(θ), 1, and Cot(θ) are lengths along the x-axis starting from the origin. If the acute angle θ is given, then any right triangles that have an angle of θ are similar to each other. This means that the ratio of any two side lengths depends only on θ.
The expression cos x + i sin x is sometimes abbreviated to cis x. The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x ...
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function