Search results
Results from the WOW.Com Content Network
Spike (S) glycoprotein (sometimes also called spike protein, [2] formerly known as E2 [3]) is the largest of the four major structural proteins found in coronaviruses. [4] The spike protein assembles into trimers that form large structures, called spikes or peplomers, [3] that project from the surface of the virion.
For this reason the spike protein has been the focus of development for COVID-19 vaccines in response to the COVID-19 pandemic caused by the virus SARS-CoV-2. [11] [12] A subgenus of the betacoronaviruses, known as embecoviruses (not including SARS-like coronaviruses), have an additional shorter surface protein known as hemagglutinin esterase. [13]
M is a glycoprotein whose glycosylation varies according to coronavirus subgroup; N-linked glycosylation is typically found in the alpha and gamma groups while O-linked glycosylation is typically found in the beta group. [8] [9] There are some exceptions; for example, in SARS-CoV, a betacoronavirus, the M protein has one N-glycosylation site.
Transmission and life-cycle of SARS-CoV-2 causing COVID-19. Coronaviruses vary significantly in risk factor. Some can kill more than 30% of those infected, such as MERS-CoV, and some are relatively harmless, such as the common cold. [49] Coronaviruses can cause colds with major symptoms, such as fever, and a sore throat from swollen adenoids. [91]
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by the coronavirus SARS-CoV-2. In January 2020, the disease spread worldwide, resulting in the COVID-19 pandemic . The symptoms of COVID‑19 can vary but often include fever, [ 7 ] fatigue, cough, breathing difficulties , loss of smell , and loss of taste .
SARS-CoV-2 is the seventh known coronavirus to infect people, after 229E, NL63, OC43, HKU1, MERS-CoV, and the original SARS-CoV. [105] Like the SARS-related coronavirus implicated in the 2003 SARS outbreak, SARS‑CoV‑2 is a member of the subgenus Sarbecovirus (beta-CoV lineage B). [106] [107] Coronaviruses undergo frequent recombination. [108]
This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version.
The 3C-like protease inhibitor ensitrelvir received authorization to treat COVID-19 in Japan in 2022. [19] [20] In 2022, an ultralarge virtual screening campaign of 235 million molecules was able to identify a novel broad-spectrum inhibitor targeting the main protease of several coronaviruses. It is unusually not a peptidomimetic. [21]