Search results
Results from the WOW.Com Content Network
A modern definition of pattern recognition is: The field of pattern recognition is concerned with the automatic discovery of regularities in data through the use of computer algorithms and with the use of these regularities to take actions such as classifying the data into different categories. [4]
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...
In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis.
It is widely used in computer vision tasks such as image annotation, [2] vehicle counting, [3] activity recognition, [4] face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video.
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.
A very common type of prior knowledge in pattern recognition is the invariance of the class (or the output of the classifier) to a transformation of the input pattern. This type of knowledge is referred to as transformation-invariance. The mostly used transformations used in image recognition are: translation; rotation; skewing; scaling.
In artificial intelligence (AI), an expert system is a computer system emulating the decision-making ability of a human expert. [1] Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural programming code. [ 2 ]
Syntactic pattern recognition can be used instead of statistical pattern recognition if clear structure exists in the patterns. One way to present such structure is via strings of symbols from a formal language. In this case, the differences in the structures of the classes are encoded as different grammars.