enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    Numerous references to earlier uses of the symmetrized divergence and to other statistical distances are given in Kullback (1959, pp. 6–7, §1.3 Divergence). The asymmetric "directed divergence" has come to be known as the Kullback–Leibler divergence, while the symmetrized "divergence" is now referred to as the Jeffreys divergence.

  3. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  4. Quantum relative entropy - Wikipedia

    en.wikipedia.org/wiki/Quantum_relative_entropy

    We see that, when the states are classically related, i.e. ρσ = σρ, the definition coincides with the classical case, in the sense that if = and = with = (, …,) and = (, …,) (because and commute, they are simultaneously diagonalizable), then (‖) = = ⁡ is just the ordinary Kullback-Leibler divergence of the probability vector ...

  5. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    The KL divergence is the (objective) expected value of Bob's (subjective) surprisal minus Alice's surprisal, measured in bits if the log is in base 2. In this way, the extent to which Bob's prior is "wrong" can be quantified in terms of how "unnecessarily surprised" it is expected to make him.

  6. Pinsker's inequality - Wikipedia

    en.wikipedia.org/wiki/Pinsker's_inequality

    In information theory, Pinsker's inequality, named after its inventor Mark Semenovich Pinsker, is an inequality that bounds the total variation distance (or statistical distance) in terms of the Kullback–Leibler divergence. The inequality is tight up to constant factors. [1]

  7. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  8. Information projection - Wikipedia

    en.wikipedia.org/wiki/Information_projection

    Viewing the Kullback–Leibler divergence as a measure of distance, the I-projection is the "closest" distribution to q of all the distributions in P. The I-projection is useful in setting up information geometry, notably because of the following inequality, valid when P is convex: [1]

  9. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    It can also be understood to be the infinitesimal form of the relative entropy (i.e., the Kullback–Leibler divergence); specifically, it is the Hessian of the divergence. Alternately, it can be understood as the metric induced by the flat space Euclidean metric, after appropriate changes of variable.