Search results
Results from the WOW.Com Content Network
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
First, one takes the symmetric closure R ∪ R −1 of R. This is then extended to a symmetric relation E ⊂ Σ ∗ × Σ ∗ by defining x ~ E y if and only if x = sut and y = svt for some strings u, v, s, t ∈ Σ ∗ with (u,v) ∈ R ∪ R −1. Finally, one takes the reflexive and transitive closure of E, which then is a monoid congruence.
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.
In mathematics, a monoidal category (or tensor category) is a category equipped with a bifunctor: that is associative up to a natural isomorphism, and an object I that is both a left and right identity for ⊗, again up to a natural isomorphism.
In mathematics and computer science, trace theory aims to provide a concrete mathematical underpinning for the study of concurrent computation and process calculi.The underpinning is provided by an algebraic definition of the free partially commutative monoid or trace monoid, or equivalently, the history monoid, which provides a concrete algebraic foundation, analogous to the way that the free ...
In the above notation, 1 is the identity morphism of M, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the dual category C op. Suppose that the monoidal category C has a symmetry γ.
The notation G × H has often been used for Cartesian products of graphs, but is now more commonly used for another construction known as the tensor product of graphs. The square symbol is intended to be an intuitive and unambiguous notation for the Cartesian product, since it shows visually the four edges resulting from the Cartesian product ...
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element.