enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    Although ca. 1 mln. times less sensitive than 1 H NMR spectroscopy, 13 C NMR spectroscopy is widely used for characterizing organic and organometallic compounds, primarily because 1H-decoupled 13C-NMR spectra are more simple, have a greater sensitivity to differences in the chemical structure, and, thus, are better suited for identifying ...

  3. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    In proton NMR of methyl halides (CH 3 X) the chemical shift of the methyl protons increase in the order I < Br < Cl < F from 2.16 ppm to 4.26 ppm reflecting this trend. In carbon NMR the chemical shift of the carbon nuclei increase in the same order from around −10 ppm to 70 ppm. Also when the electronegative atom is removed further away the ...

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The chemical shift provides structural information. The conversion of chemical shifts (and J's, see below) is called assigning the spectrum. For diamagnetic organic compounds, assignments of 1 H and 13 C NMR spectra are extremely sophisticated because of the large databases and easy computational tools. In general, chemical shifts for protons ...

  5. Nuclear magnetic resonance chemical shift re-referencing

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    In a recent study, [11] a chemical shift re-referencing program (PANAV) was run on a total of 2421 BMRB entries that had a sufficient proportion of (>80%) of assigned chemical shifts to perform a robust chemical shift reference correction. A total of 243 entries were found with 13Cα shifts offset by more than 1.0 ppm, 238 entries with 13Cβ ...

  6. Nuclear magnetic resonance spectroscopy of carbohydrates

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Typical 1 H NMR chemical shifts of carbohydrate ring protons are 3–6 ppm (4.5–5.5 ppm for anomeric protons). Typical 13 C NMR chemical shifts of carbohydrate ring carbons are 60–110 ppm In the case of simple mono- and oligosaccharide molecules, all proton signals are typically separated from one another (usually at 500 MHz or better NMR ...

  7. Chemical shift index - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift_index

    Example of chemical shift index. The chemical shift index or CSI is a widely employed technique in protein nuclear magnetic resonance spectroscopy that can be used to display and identify the location (i.e. start and end) as well as the type of protein secondary structure (beta strands, helices and random coil regions) found in proteins using only backbone chemical shift data [1] [2] The ...

  8. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...

  9. Biological Magnetic Resonance Data Bank - Wikipedia

    en.wikipedia.org/wiki/Biological_Magnetic...

    The bulk of the data deposited at the BMRB consists of over 11,900 entries containing 1 H, 13 C, 15 N and 31 P assigned chemical shifts and coupling constants of peptides, proteins and nucleic acids. [5] Other derived data like residual dipolar couplings (RDC), relaxation parameters, NOE values, order parameters and hydrogen exchange rates are ...