Search results
Results from the WOW.Com Content Network
Titanium carbide, Ti C, is an extremely hard (Mohs 9–9.5) refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride ( face-centered cubic ) crystal structure .
Some exhibit a range of stoichiometries, being a non-stoichiometric mixture of various carbides arising due to crystal defects. Some of them, including titanium carbide and tungsten carbide, are important industrially and are used to coat metals in cutting tools. [3]
Titanium nitride (TiN; sometimes known as tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.
Crystal structure hexagonal close ... Titanium is a chemical element; it has symbol Ti and atomic number 22. ... Titanium carbide (TiC), which is also very hard, ...
The first cemented carbide developed was tungsten carbide (introduced in 1927) which uses tungsten carbide particles held together by a cobalt metal binder. Since then, other cemented carbides have been developed, such as titanium carbide, which is better suited for cutting steel, and tantalum carbide, which is tougher than tungsten carbide. [1]
Ti-6Al-4V titanium alloy commonly exists in alpha, with hcp crystal structure, (SG : P63/mmc) and beta, with bcc crystal structure, (SG : Im-3m) phases. While mechanical properties are a function of the heat treatment condition of the alloy and can vary based upon properties, typical property ranges for well-processed Ti-6Al-4V are shown below.
Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. [1] They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking.
The +4 oxidation state dominates titanium chemistry, [1] but compounds in the +3 oxidation state are also numerous. [2] Commonly, titanium adopts an octahedral coordination geometry in its complexes, [3] [4] but tetrahedral TiCl 4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of ...