Search results
Results from the WOW.Com Content Network
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...
A formulae booklet was available to all candidates for all examinations up to and including those in 2018. As of 2019, candidates are no longer be issued with a formulae booklet; instead they will be expected to recall, or know how to derive quickly, standard formulae.
A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84
Cyclic notation, a way of writing permutations; Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be ...
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field and plays a key role in the theory of central simple algebras. Definition [ edit ]
This is known as triple product expansion, or Lagrange's formula, [2] [3] although the latter name is also used for several other formulas. Its right hand side can be remembered by using the mnemonic "ACB − ABC", provided one keeps in mind which vectors are dotted together.
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]