Search results
Results from the WOW.Com Content Network
If the two known points are given by the coordinates (,) and (,), the linear interpolant is the straight line between these points. For a value in the interval (,), the value along the straight line is given from the equation of slopes =, which can be derived geometrically from the figure on the right.
The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line. The distance of an arbitrary point p to this line is given by
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference. Thus if p {\displaystyle p} and q {\displaystyle q} are two points on the real line, then the distance between them is given by: [ 1 ]
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
The four red dots show the data points and the green dot is the point at which we want to interpolate. Suppose that we want to find the value of the unknown function f at the point (x, y). It is assumed that we know the value of f at the four points Q 11 = (x 1, y 1), Q 12 = (x 1, y 2), Q 21 = (x 2, y 1), and Q 22 = (x 2, y 2).
A necessary condition for two lines to intersect is that they are in the same plane—that is, are not skew lines. Satisfaction of this condition is equivalent to the tetrahedron with vertices at two of the points on one line and two of the points on the other line being degenerate in the sense of having zero volume.
One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba multiplication, this technique is substantially faster than quadratic multiplication, even for modest-sized inputs, especially on parallel hardware.