Search results
Results from the WOW.Com Content Network
The ventricles are filled with cerebrospinal fluid (CSF) which bathes and cushions the brain and spinal cord within their bony confines. CSF is produced by modified ependymal cells of the choroid plexus found in all components of the ventricular system except for the cerebral aqueduct and the posterior and anterior horns of the lateral ventricles.
In the brain, the interventricular foramina (foramina of Monro) are channels that connect the paired lateral ventricles with the third ventricle at the midline of the brain. As channels, they allow cerebrospinal fluid (CSF) produced in the lateral ventricles to reach the third ventricle and then the rest of the brain's ventricular system.
Three-dimensional representation of the ventricular system of the human brain. The fourth ventricle is the lower blue mass. The little points sticking out on the left and right are the two parts of the lateral recess.
For a number of substances, the BCSFB is the primary site of entry into brain tissue. [14] The blood–cerebrospinal fluid barrier has also been shown to modulate the entry of leukocytes from the blood to the central nervous system. The choroid plexus cells secrete cytokines that recruit monocyte-derived macrophages, among other cells, to the ...
Fourth ventricle location shown in red (E), pons (B); the floor of the ventricle is to the right, the roof to the left. The fourth ventricle has a roof at its upper (posterior) surface and a floor at its lower (anterior) surface, and side walls formed by the cerebellar peduncles (nerve bundles joining the structure on the posterior side of the ventricle to the structures on the anterior side).
Circumventricular organs (CVOs) (circum-: around ; ventricular: of ventricle) are structures in the brain characterized by their extensive and highly permeable capillaries, unlike those in the rest of the brain where there exists a blood–brain barrier (BBB) at the capillary level.
The third ventricle is one of the four connected cerebral ventricles of the ventricular system within the mammalian brain. It is a slit-like cavity formed in the diencephalon between the two thalami, in the midline between the right and left lateral ventricles, and is filled with cerebrospinal fluid (CSF). [1]
The cerebral aqueduct (aqueduct of the midbrain, aqueduct of Sylvius, Sylvian aqueduct, mesencephalic duct) is a small, narrow tube connecting the third and fourth ventricles of the brain. [ 1 ] [ 2 ] The cerebral aqueduct is a midline structure that passes through the midbrain .