enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  3. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]

  4. Theory of impetus - Wikipedia

    en.wikipedia.org/wiki/Theory_of_impetus

    At most, it comes close to the modern term “linear momentum” of a mass. This is because it is linear momentum as the product of mass and velocity that maintains motion due to the inertia of the mass (conservation of linear momentum). But momentum is not a force; rather, a force is the cause of a change in the momentum of a body, and vice versa.

  5. Absolute angular momentum - Wikipedia

    en.wikipedia.org/wiki/Absolute_angular_momentum

    M represents absolute angular momentum per unit mass of the fluid parcel (in ⁠ m 2 / s ⁠), r represents distance from the center of the Earth to the fluid parcel (in m), u represents earth-relative eastward component of velocity of the fluid parcel (in ⁠ m / s ⁠), φ represents latitude (in rad), and

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    If R is chosen as the center of mass these equations simplify to =, = = () + = where m is the total mass of all the particles, p is the linear momentum, and L is the angular momentum. The law of conservation of momentum predicts that for any system not subjected to external forces the momentum of the system will remain constant, which means the ...

  8. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.

  9. Frame-dragging - Wikipedia

    en.wikipedia.org/wiki/Frame-dragging

    Linear frame dragging is the similarly inevitable result of the general principle of relativity, applied to linear momentum. Although it arguably has equal theoretical legitimacy to the "rotational" effect, the difficulty of obtaining an experimental verification of the effect means that it receives much less discussion and is often omitted ...