Search results
Results from the WOW.Com Content Network
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
These correlation coefficients are plotted against their corresponding shape parameters. The maximum correlation coefficient corresponds to the optimal value of the shape parameter. For better precision, two iterations of the PPCC plot can be generated; the first is for finding the right neighborhood and the second is for fine tuning the estimate.
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.
The Spearman correlation coefficient is often described as being "nonparametric". This can have two meanings. First, a perfect Spearman correlation results when X and Y are related by any monotonic function. Contrast this with the Pearson correlation, which only gives a perfect value when X and Y are related by a linear function.
A logarithmic chart allows only positive values to be plotted. A square root scale chart cannot show negative values. x: the x-values as a comma-separated list, for dates and time see remark in xType and yType; y or y1, y2, …: the y-values for one or several data series, respectively. For pie charts y2 denotes the radius of the corresponding ...
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities.It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.