Search results
Results from the WOW.Com Content Network
It is also rotationally invariant, in that a rotation applied to the system leaves the helicity unchanged. Helicity, however, is not Lorentz invariant; under the action of a Lorentz boost, the helicity may change sign. Consider, for example, a baseball, pitched as a gyroball, so that its spin axis is aligned with the direction of the pitch. It ...
The chirality of a molecule that has a helical, propeller, or screw-shaped geometry is called helicity [5] or helical chirality. [6] [7] The screw axis or the D n, or C n principle symmetry axis is considered to be the axis of chirality. Some sources consider helical chirality to be a type of axial chirality, [7] and some do not.
Neutrinos were formerly considered to fall into this class as well. However, because neutrinos have been observed to oscillate in flavour, it is now known that at least two of the three mass eigenstates of the left-helicity neutrinos and right-helicity anti-neutrinos each must have non-zero mass.
To see an in depth discussion of the two with examples, which also shows how chirality and helicity approach the same thing as speed approaches that of light, click the link entitled "Chirality and Helicity in Depth" on the same page. History of science: parity violation; Helicity, Chirality, Mass, and the Higgs (Quantum Diaries blog)
Helicity is the projection (dot product) of a spin pseudovector onto the direction of momentum (a true vector). Pseudoscalar particles, i.e. particles with spin 0 and odd parity, that is, a particle with no intrinsic spin with wave function that changes sign under parity inversion. Examples are pseudoscalar mesons.
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
The two-component helicity eigenstates satisfy ^ (^) = (^) where are the Pauli matrices, ^ is the direction of the fermion momentum, = depending on whether spin is pointing in the same direction as ^ or opposite.
The systematic naming for this class of compounds is based on the number of rings: [n]helicene is the structure consisting of n rings. According to IUPAC, only structures where n is at least 5 are considered helicenes. [1] Some specific compounds also have alternate or trivial names.