Search results
Results from the WOW.Com Content Network
Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010. SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words.
Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
The RIPE Consortium [1] MD4: RIPEMD-128 RIPEMD-256 RIPEMD-160 RIPEMD-320: 1996 Hans Dobbertin Antoon Bosselaers Bart Preneel: RIPEMD: Website Specification: SHA-0: 1993 NSA: SHA-0: SHA-1: 1995 SHA-0: Specification: SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche ...
SHA-256 hash function. Smart contracts use 256- or 257-bit integers; 256-bit words for the Ethereum Virtual Machine. "We realize that a 257 bits byte is quite unusual, but for smart contracts it is ok to have at least 256 bits numbers. The leading VM for smart contracts, Ethereum VM, introduced this practice and other blockchain VMs followed." [8]
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
In cryptography, a Key Checksum Value (KCV) is the checksum of a cryptographic key. [1] It is used to validate the integrity of the key or compare keys without knowing their actual values. The KCV is computed by encrypting a block of bytes, each with value '00' or '01', with the cryptographic key and retaining the first 6 hexadecimal characters ...
As of 2017, collisions but not preimages can be found in MD5 and SHA-1. The future is therefore likely to bring increasing use of newer hash functions such as SHA-256. However, fingerprints based on SHA-256 and other hash functions with long output lengths are more likely to be truncated than (relatively short) MD5 or SHA-1 fingerprints.