Search results
Results from the WOW.Com Content Network
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.
A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal . [ 1 ] It is commonly applied to sonar , radar , and laser systems, and to other applications, such as in spread-spectrum communications (see chirp spread spectrum ).
The stationary phase method does not predict or deal with Fresnell ripples, so it is unable to offer any means by which these ripples can be minimized. As an example, the figure below shows a chirp spectrum with T. Δ F =250 obtained for a non-linear chirp aiming to match the Hamming window, using the methods described above. The figure shows ...
One or multiple reflections between a pair of chirped mirrors or similar device allow any form of chirp. This is often used in conjunction with the other techniques to correct for higher orders. The Dazzler is a commercial pulse shaper in which light is diffracted from an acoustic wave. By tuning the timing, frequency, and amplitude of the ...
In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. [1] A chirp is a sinusoidal signal whose frequency increases or decreases over time (often with a polynomial expression for the relationship between time and frequency).
More precisely, a chirplet is a windowed portion of a chirp function, where the window provides some time localization property. In terms of time–frequency space, chirplets exist as rotated, sheared, or other structures that move from the traditional parallelism with the time and frequency axes that are typical for waves (Fourier and short ...
I, personally think the original article is a bit lightweight and provides no real guidance for onward study. Also the mathematics on strange chirp laws is interesting but is of no relevance to the work I did. In addition, I was intending to expand the section on chirp pulse generation, sometime soon, and link it to my (previously) existing ...
In astrophysics, the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves. Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal ...