enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet–Jordan test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet–Jordan_test

    In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a complex-valued, periodic function to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity).

  3. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  4. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    However Carleson's theorem shows that for a given continuous function the Fourier series converges almost everywhere. It is also possible to give explicit examples of a continuous function whose Fourier series diverges at 0: for instance, the even and 2π-periodic function f defined for all x in [0,π] by [ 9 ]

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem. [39] [40] [41] [42]

  6. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  7. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    1.11 Dirichlet's test. 1.12 Cauchy's convergence test. 1.13 Stolz–Cesàro theorem. ... for instance for Fourier series there is the Dini test.

  8. Peter Gustav Lejeune Dirichlet - Wikipedia

    en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

    The memoir pointed out Cauchy's mistake and introduced Dirichlet's test for the convergence of series. It also introduced the Dirichlet function as an example of a function that is not integrable (the definite integral was still a developing topic at the time) and, in the proof of the theorem for the Fourier series, introduced the Dirichlet ...

  9. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    This is the analogue for Dirichlet series of the radius of convergence for power series. The Dirichlet series case is more complicated, though: absolute convergence and uniform convergence may occur in distinct half-planes. In many cases, the analytic function associated with a Dirichlet series has an analytic extension to a larger domain.