Search results
Results from the WOW.Com Content Network
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒Erdős–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
Sometimes, a conjecture is called a hypothesis when it is used frequently and repeatedly as an assumption in proofs of other results. For example, the Riemann hypothesis is a conjecture from number theory that — amongst other things — makes predictions about the distribution of prime numbers. Few number theorists doubt that the Riemann ...
This conjecture is known as Lemoine's conjecture and is also called Levy's conjecture. The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [33] and proved by Melfi in 1996: [34] every even number is a sum of two practical numbers.
A conjecture is a proposition that is unproven. Conjectures are related to hypotheses , which in science are empirically testable conjectures. In mathematics , a conjecture is an unproven proposition that appears correct.
If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to 2.95 × 10 20, but no general proof has been found.
Admitting the BSD conjecture, these estimations correspond to information about the rank of families of elliptic curves in question. For example: suppose the generalized Riemann hypothesis and the BSD conjecture, the average rank of curves given by y 2 = x 3 + ax+ b is smaller than 2. [7]
The abc conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. [ 1 ] [ 2 ] It is stated in terms of three positive integers a , b {\displaystyle a,b} and c {\displaystyle c} (hence the name) that are relatively prime and satisfy a ...
Schanuel's conjecture; Schinzel's hypothesis H; Scholz conjecture; Second Hardy–Littlewood conjecture; Serre's conjecture II; Sexy prime; Sierpiński number; Singmaster's conjecture; Safe and Sophie Germain primes; Stark conjectures; Sums of three cubes; Superperfect number; Supersingular prime (algebraic number theory) Szpiro's conjecture