Search results
Results from the WOW.Com Content Network
The distinction is relevant when product A forms faster than product B because the activation energy for product A is lower than that for product B, yet product B is more stable. In such a case A is the kinetic product and is favoured under kinetic control and B is the thermodynamic product and is favoured under thermodynamic control. [1] [2] [3]
A reaction coordinate diagram can also be used to qualitatively illustrate kinetic and thermodynamic control in a reaction. Figure 9:Kinetic and Thermodynamic Control: A. Product B is both the kinetic and thermodynamic product and B. Product A is the kinetic product while B is the thermodynamic product. [4]
This type of chemical thermodynamic equilibrium will persist indefinitely unless the system is changed. Chemical systems might undergo changes in the phase of matter or a set of chemical reactions. State A is said to be more thermodynamically stable than state B if the Gibbs free energy of the change from A to B is positive.
Being "stuck" in a thermodynamic trough without being at the lowest energy state is known as having kinetic stability or being kinetically persistent. The particular motion or kinetics of the atoms involved has resulted in getting stuck, despite there being preferable (lower-energy) alternatives.
If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The establishment of the concept of internal energy distinguishes the ...
If a reactant can produce two products, the thermodynamically most stable one will form in general, except in special circumstances when the reaction is said to be under kinetic reaction control. The Curtin–Hammett principle applies when determining the product ratio for two reactants interconverting rapidly, each going to a distinct product.
Food is similar to hydrocarbon and carbohydrate fuels, and when it is oxidized, its energy release is similar (though assessed differently than for a hydrocarbon fuel — see food energy). In chemical thermodynamics, the term used for the chemical potential energy is chemical potential, and sometimes the Gibbs-Duhem equation is used.
In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition.