Search results
Results from the WOW.Com Content Network
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
In statistics, Dixon's Q test, or simply the Q test, is used for identification and rejection of outliers.This assumes normal distribution and per Robert Dean and Wilfrid Dixon, and others, this test should be used sparingly and never more than once in a data set.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.
Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution, thus are useful for getting an initial understanding of a data set. For example, comparing the distribution of ages between a group of people (e.g., male and females). Flowchart ...
Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form, graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such as scatter plots , histograms , probability plots , spaghetti plots , residual plots, box plots , block plots and biplots .
In statistical graphics, the functional boxplot is an informative exploratory tool that has been proposed for visualizing functional data. [1] [2] Analogous to the classical boxplot, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.
In descriptive statistics, the seven-number summary is a collection of seven summary statistics, and is an extension of the five-number summary. There are three similar, common forms. As with the five-number summary, it can be represented by a modified box plot, adding hatch-marks on the "whiskers" for two of the additional numbers.