Search results
Results from the WOW.Com Content Network
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
The settling time is the time for departures from final value to sink below some specified level, say 10% of final value. The dependence of settling time upon μ is not obvious, and the approximation of a two-pole system probably is not accurate enough to make any real-world conclusions about feedback dependence of settling time.
A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]
Point and figure (P&F) is a charting technique used in technical analysis. Point and figure charting does not plot price against time as time-based charts do. Instead it plots price against changes in direction by plotting a column of Xs as the price rises and a column of Os as the price falls. [1] [2]
For a given iterated function :, the plot consists of a diagonal (=) line and a curve representing = (). To plot the behaviour of a value x 0 {\displaystyle x_{0}} , apply the following steps. Find the point on the function curve with an x-coordinate of x 0 {\displaystyle x_{0}} .
In electrical engineering specifically, the transient response is the circuit’s temporary response that will die out with time. [1] It is followed by the steady state response, which is the behavior of the circuit a long time after an external excitation is applied.
Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein. Test functions for single-objective optimization