Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
Electroosmotic pumps are fabricated from silica nanospheres [6] [7] or hydrophilic porous glass, the pumping mechanism is generated by an external electric field applied on an electric double layer (EDL), generates high pressures (e.g., more than 340 atm (34 MPa) at 12 kV applied potentials) and high flow rates (e.g., 40 ml/min at 100 V in a pumping structure less than 1 cm 3 in volume).
In chemical analysis, capillary electrochromatography (CEC) is a chromatographic technique in which the mobile phase is driven through the chromatographic bed by electro-osmosis. [1] [2] Capillary electrochromatography is a combination of two analytical techniques, high-performance liquid chromatography and capillary electrophoresis.
In this method a high voltage is applied to the sample solution and molecules are loaded to the CE capillary by electromigration and electroosmotic flow of the sample. [10] Electrokinetic injection improves the sensitivity comparing to hydrodynamic injection while using lower voltage and longer injection time, but reproducibility of peak areas ...
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels.Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar ...
The anionic character of the sulfate groups of SDS causes the surfactant and micelles to have electrophoretic mobility that is counter to the direction of the strong electroosmotic flow. As a result, the surfactant monomers and micelles migrate quite slowly, though their net movement is still toward the cathode . [ 3 ]
The surface potential of the cell wall produces electro-osmotic flow. Since the electrophoresis chamber is a closed system, backward flow is produced at the center of the cell. Then the observed mobility or velocity from Eq. (7) is a result of the combination of osmotic flow and electrophoretic movement.
Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. [1] [2] Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the fluid motion induced by electric fields.