enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Similarly, the geometric multiplicity of the eigenvalue 3 is 1 because its eigenspace is spanned by just one vector []. The total geometric multiplicity γ A is 2, which is the smallest it could be for a matrix with two distinct eigenvalues. Geometric multiplicities are defined in a later section.

  6. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Similarly, the eigenspace corresponding to the eigenvalue 2 is spanned by w = (1, −1, 0, 1) T. Finally, the eigenspace corresponding to the eigenvalue 4 is also one-dimensional (even though this is a double eigenvalue) and is spanned by x = (1, 0, −1, 1) T. So, the geometric multiplicity (that is, the dimension of the eigenspace of the

  7. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...

  8. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    3. The eigenvalues are not necessarily in descending order. This can be achieved by a simple sorting algorithm. for k := 1 to n−1 do m := k for l := k+1 to n do if e l > e m then m := l endif endfor if k ≠ m then swap e m,e k swap E m,E k endif endfor. 4. The algorithm is written using matrix notation (1 based arrays instead of 0 based). 5.

  9. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    There are two types of continuity concerning eigenvalues: (1) each individual eigenvalue is a usual continuous function (such a representation does exist on a real interval but may not exist on a complex domain), (2) eigenvalues are continuous as a whole in the topological sense (a mapping from the matrix space with metric induced by a norm to ...