Search results
Results from the WOW.Com Content Network
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [1][2] as a refinement of Edward W. Veitch 's 1952 Veitch chart, [3][4] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram[5][6] (aka. Marquand diagram[4]).
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: Simplification of algebraic expressions, in computer algebra. Simplification of boolean expressions i.e. logic optimization.
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 . In Unicode, precomposed fraction characters are in the Number Forms block.
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x (x + 1)(x + 2) – namely x = 0, x = −1, and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n + 1 = 1 / a n + 1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence {d i} to make each partial denominator a 1:
If we solve this equation, we find that x = 2. More generally, we find that + + + + is the positive real root of the equation x 3 − x − n = 0 for all n > 0. For n = 1, this root is the plastic ratio ρ, approximately equal to 1.3247.
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets