Search results
Results from the WOW.Com Content Network
Squaring the square is the problem of tiling an integral square using only other integral squares. (An integral square is a square whose sides have integer length.) The name was coined in a humorous analogy with squaring the circle. Squaring the square is an easy task unless additional conditions are set. The most studied restriction is that ...
Fourth power. In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “ tesseracted ”, “ hypercubed ...
The expression b 2 = b · b is called "the square of b" or "b squared", because the area of a square with side-length b is b 2. (It is true that it could also be called "b to the second power", but "the square of b" and "b squared" are so ingrained by tradition and convenience that "b to the second power" tends to sound unusual or clumsy.)
Uniform colorings. There are a total of 32 uniform colorings of the 11 uniform tilings: Triangular tiling – 9 uniform colorings, 4 wythoffian, 5 nonwythoffian. Square tiling – 9 colorings: 7 wythoffian, 2 nonwythoffian. Hexagonal tiling – 3 colorings, all wythoffian. Trihexagonal tiling – 2 colorings, both wythoffian.
Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of and . [1] In terms of a new quantity , this expression is a quadratic ...
Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille. The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees.
[59]: 354, 11.4.2.5 This does not mean that it is efficient to use Gaussian mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested to use k-means clustering to find starting points for ...