Search results
Results from the WOW.Com Content Network
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
The graph of the cube function is known as the cubic parabola. Because the cube function is an odd function, ... The derivative of x 3 equals 3x 2.
Cubic function. Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis—where y = 0). The case shown has two critical points. Here the function is f(x) = (x3 + 3x2 − 6x − 8)/4. In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three.
The Collatz graph is a graph defined by the inverse relation = {{} ... " 3 x + 1 page".
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
A graph is planar if it contains as a subdivision neither the complete bipartite graph K 3,3 nor the complete graph K 5. Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K 5.
A cycle graph or circular graph of order n ≥ 3 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1, plus the edge {v n, v 1}. Cycle graphs can be characterized as connected graphs in which the degree of all vertices is 2.
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.