Search results
Results from the WOW.Com Content Network
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
The aleph numbers differ from the infinity commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-eth" item in a sequence.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) : 1670 (with the horizontal bar over the inequality sign, rather than below it) ...
so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.
The infinity symbol (∞) is a mathematical symbol representing the concept of infinity. This symbol is also called a lemniscate , [ 1 ] after the lemniscate curves of a similar shape studied in algebraic geometry , [ 2 ] or "lazy eight", in the terminology of livestock branding .
The symbol is used to denote negation. For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as: