Search results
Results from the WOW.Com Content Network
In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
Gott called the full set of regular polyhedra, regular tilings, and regular pseudopolyhedra as regular generalized polyhedra, representable by a {p,q} Schläfli symbol, with by p-gonal faces, q around each vertex. However neither the term "pseudopolyhedron" nor Gott's definition of regularity have achieved wide usage.
The Petrie polygon of a regular polyhedron can be defined as the skew polygon (whose vertices do not all lie in the same plane) such that every two consecutive sides (but not three) belong to one of the faces of the polyhedron. Each finite regular polyhedron can be orthogonally projected onto a plane so that the Petrie polygon becomes a regular ...
In 1926 John Flinders Petrie took the concept of a regular skew polygons, polygons whose vertices are not all in the same plane, and extended it to polyhedra.While apeirohedra are typically required to tile the 2-dimensional plane, Petrie considered cases where the faces were still convex but were not required to lie flat in the plane, they could have a skew polygon vertex figure.
A regular polyhedron with Schläfli symbol {p, q}, Coxeter diagrams , has a regular face type {p}, and regular vertex figure {q}. A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.
The regular skew polyhedron, {6,4|3}, exists in 4-space with 4 hexagonal around each vertex, in a zig-zagging nonplanar vertex figure. These hexagonal faces can be seen on the bitruncated 5-cell, using all 60 edges and 30 vertices.
When three such symmetries belong to a polyhedron, it is known as regular polyhedron. [39] There are nine regular polyhedra: five Platonic solids (cube, octahedron, icosahedron, tetrahedron, and dodecahedron—all of which have regular polygonal faces) and four Kepler–Poinsot polyhedrons. Nevertheless, some polyhedrons may not possess one or ...