enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular skew polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_skew_polyhedron

    In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  4. Skew apeirohedron - Wikipedia

    en.wikipedia.org/wiki/Skew_apeirohedron

    Gott called the full set of regular polyhedra, regular tilings, and regular pseudopolyhedra as regular generalized polyhedra, representable by a {p,q} Schläfli symbol, with by p-gonal faces, q around each vertex. However neither the term "pseudopolyhedron" nor Gott's definition of regularity have achieved wide usage.

  5. John Flinders Petrie - Wikipedia

    en.wikipedia.org/wiki/John_Flinders_Petrie

    The Petrie polygon of a regular polyhedron can be defined as the skew polygon (whose vertices do not all lie in the same plane) such that every two consecutive sides (but not three) belong to one of the faces of the polyhedron. Each finite regular polyhedron can be orthogonally projected onto a plane so that the Petrie polygon becomes a regular ...

  6. Regular skew apeirohedron - Wikipedia

    en.wikipedia.org/wiki/Regular_skew_apeirohedron

    In 1926 John Flinders Petrie took the concept of a regular skew polygons, polygons whose vertices are not all in the same plane, and extended it to polyhedra.While apeirohedra are typically required to tile the 2-dimensional plane, Petrie considered cases where the faces were still convex but were not required to lie flat in the plane, they could have a skew polygon vertex figure.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    A regular polyhedron with Schläfli symbol {p, q}, Coxeter diagrams , has a regular face type {p}, and regular vertex figure {q}. A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.

  8. Truncated 5-cell - Wikipedia

    en.wikipedia.org/wiki/Truncated_5-cell

    The regular skew polyhedron, {6,4|3}, exists in 4-space with 4 hexagonal around each vertex, in a zig-zagging nonplanar vertex figure. These hexagonal faces can be seen on the bitruncated 5-cell, using all 60 edges and 30 vertices.

  9. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    When three such symmetries belong to a polyhedron, it is known as regular polyhedron. [39] There are nine regular polyhedra: five Platonic solids (cube, octahedron, icosahedron, tetrahedron, and dodecahedron—all of which have regular polygonal faces) and four Kepler–Poinsot polyhedrons. Nevertheless, some polyhedrons may not possess one or ...