Search results
Results from the WOW.Com Content Network
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The slope of a nonvertical line is a number that measures how steeply the line is slanted (rise-over-run). If the line is the graph of the linear function f ( x ) = a x + b {\displaystyle f(x)=ax+b} , this slope is given by the constant a .
Given two different points (x 1, y 1) and (x 2, y 2), there is exactly one line that passes through them. There are several ways to write a linear equation of this line. If x 1 ≠ x 2, the slope of the line is . Thus, a point-slope form is [3]
Specifically, a straight line on a log–log plot containing points (x 0, F 0) and (x 1, F 1) will have the function: = (/) (/), Of course, the inverse is true too: any function of the form = will have a straight line as its log–log graph representation, where the slope of the line is m.
In non-parametric statistics, the Theil–Sen estimator is a method for robustly fitting a line to sample points in the plane (simple linear regression) by choosing the median of the slopes of all lines through pairs of points. It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the ...
Notice that the points (2,1) and (2,3) are on opposite sides of the line and (,) evaluates to positive or negative. A line splits a plane into halves and the half-plane that has a negative (,) can be called the negative half-plane, and the other half can be called the positive half-plane. This observation is very important in the remainder of ...
These points form a line, and y = x is said to be the equation for this line. In general, linear equations involving x and y specify lines, quadratic equations specify conic sections , and more complicated equations describe more complicated figures.