enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Block Wiedemann algorithm - Wikipedia

    en.wikipedia.org/wiki/Block_Wiedemann_algorithm

    The block Wiedemann algorithm can be used to calculate the leading invariant factors of the matrix, ie, the largest blocks of the Frobenius normal form.Given and , where is a finite field of size , the probability that the leading < invariant factors of are preserved in = is

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.

  4. Isomap - Wikipedia

    en.wikipedia.org/wiki/Isomap

    However, the kernel matrix K is not always positive semidefinite. The main idea for kernel Isomap is to make this K as a Mercer kernel matrix (that is positive semidefinite) using a constant-shifting method, in order to relate it to kernel PCA such that the generalization property naturally emerges.

  5. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Theoretically, a Gram matrix with respect to {, …,} (sometimes also called a "kernel matrix" [4]), where = (,), must be positive semi-definite (PSD). [5] Empirically, for machine learning heuristics, choices of a function k {\displaystyle k} that do not satisfy Mercer's condition may still perform reasonably if k {\displaystyle k} at least ...

  7. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  8. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  9. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]