Search results
Results from the WOW.Com Content Network
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),
The three identities form a complete list of symmetries of the curvature tensor, i.e. given any tensor that satisfies the identities above, one could find a Riemannian manifold with such a curvature tensor at some point. Simple calculations show that such a tensor has / independent components.
Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = . The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.
Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplacian in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function.
A Riemannian space form is a Riemannian manifold with constant curvature which is additionally connected and geodesically complete. A Riemannian space form is said to be a spherical space form if the curvature is positive, a Euclidean space form if the curvature is zero, and a hyperbolic space form or hyperbolic manifold if
Since any Riemannian metric is parallel with respect to its Levi-Civita connection, this shows that the Riemann tensor of any constant-curvature space is also parallel. The Ricci tensor is then given by Ric = ( n − 1 ) κ g {\displaystyle \operatorname {Ric} =(n-1)\kappa g} and the scalar curvature is n ( n − 1 ) κ . {\displaystyle n(n-1 ...