Search results
Results from the WOW.Com Content Network
Hexagonal tilings can be made with the identical {6,3} topology as the regular tiling (3 hexagons around every vertex). With isohedral faces, there are 13 variations. Symmetry given assumes all faces are the same color. Colors here represent the lattice positions. [2] Single-color (1-tile) lattices are parallelogon hexagons.
Aperiodic tiling with "Tile(1,1)". The tiles are colored according to their rotational orientation modulo 60 degrees. [1] ( Smith, Myers, Kaplan, and Goodman-Strauss) In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way.
Uniform colorings. There are a total of 32 uniform colorings of the 11 uniform tilings: Triangular tiling – 9 uniform colorings, 4 wythoffian, 5 nonwythoffian. Square tiling – 9 colorings: 7 wythoffian, 2 nonwythoffian. Hexagonal tiling – 3 colorings, all wythoffian. Trihexagonal tiling – 2 colorings, both wythoffian.
Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied. Common ones are that there must be no gaps between tiles, and that no corner of one tile can lie along the edge ...
Serpentiles. Serpentiles is the name coined by Kurt N. Van Ness for the hexagonal tiles used in various edge-matching puzzle connection abstract strategy games, such as Psyche-Paths, Kaliko, and Tantrix. [1] For each tile, one to three colors are used to draw paths linking the six sides together in various configurations.
Dual to Ammann A2. Tilings MLD from the tilings by the Shield tiles. Tilings MLD from the tilings by the Socolar tiles. Tiling is MLD to Penrose P1, P2, P3, and Robinson triangles. Tiling is MLD to Penrose P1, P2, P3, and "Starfish, ivy leaf, hex". Date is for publication of matching rules.
Rhombitrihexagonal tiling. In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr {3,6}. John Conway calls it a rhombihexadeltille. [1]
File:Hexagonal tiling 7-colors.svg. Size of this PNG preview of this SVG file: 548 × 548 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels. This is a file from the Wikimedia Commons. Information from its description page there is shown below.